Back to Search Start Over

FixCaps: An Improved Capsules Network for Diagnosis of Skin Cancer

Authors :
Zhangli Lan
Songbai Cai
Xu He
Xinpeng Wen
Publication Year :
2022
Publisher :
Zenodo, 2022.

Abstract

The early detection of skin cancer substantially improves the five-year survival rate of patients. It is often difficult to distinguish early malignant tumors from skin images, even by expert dermatologists. Therefore, several classification methods of dermatoscopic images have been proposed, but they have been found to be inadequate or defective for skin cancer detection, and often require a large amount of calculations. This study proposes an improved capsule network called FixCaps for dermoscopic image classification. FixCaps has a larger receptive field than CapsNets by applying a high-performance large-kernel at the bottom convolution layer whose kernel size is as large as 31×31, in contrast to commonly used 9×9. The convolutional block attention module was used to reduce the losses of spatial information caused by convolution and pooling. The group convolution was used to avoid model underfitting in the capsule layer. The network can improve the detection accuracy and reduce a great amount of calculations, compared with several existing methods. The experimental results showed that FixCaps is better than IRv2-SA for skin cancer diagnosis, which achieved an accuracy of 96.49% on the HAM10000 dataset.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....fd1fb4c550633c533b5a4081d430cb11