Back to Search Start Over

Synthesis of Heterometal Cluster Complexes by the Reaction of Cobaltadichalcogenolato Complexes with Groups 6 and 8 Metal Carbonyls

Authors :
Teppei Yamada
Jun Mizutani
Norikiyo Nakagawa
Kosuke Namiki
Satoru Habe
Masaki Murata
Shingo Araki
Masato Kurihara
Hiroshi Nishihara
Masayuki Nihei
Takuya Nankawa
Source :
Inorganic Chemistry. 45:1108-1116
Publication Year :
2006
Publisher :
American Chemical Society (ACS), 2006.

Abstract

Metalladichalcogenolate cluster complexes [{CpCo(S2C6H4)}2Mo(CO)2] (Cp = eta(5)-C5H5) (3), [{CpCo(S2C6H4)}2W(CO)2] (4), [CpCo(S2C6H4)Fe(CO)3] (5), [CpCo(S2C6H4)Ru(CO)2(P(t)Bu3)] (6), [{CpCo(Se2C6H4)}2Mo(CO)2] (7), and [{CpCo(Se2C6H4)}(Se2C6H4)W(CO)2] (8) were synthesized by the reaction of [CpCo(E2C6H4)] (E = S, Se) with [M(CO)3(py)3] (M = Mo, W), [Fe(CO)5], or [Ru(CO)3(P(t)Bu3)2], and their crystal structures and physical properties were investigated. In the series of trinuclear group 6 metal-Co complexes, 3, 4, and 7 have similar structures, but the W-Se complex, 8, eliminates one cobalt atom and one cyclopentadienyl group from the sulfur analogue, 4, and does not satisfy the 18-electron rule. 1H NMR observation suggested that the CoW dinuclear complex 8 was generated via a trinuclear Co2W complex, with a structure comparable to 7. The trinuclear cluster complexes, 3, 4, and 7, undergo quasi-reversible two-step one-electron reduction, indicating the formation of mixed-valence complexes Co(III)M(0)Co(II) (M = Mo, W). The thermodynamic stability of the mixed-valence state increases in the order 4 < 3 < 7. In the dinuclear group 8 metal-Co complexes, 5 and 6, the CpCo(S2C6H4) moiety and the metal carbonyl moiety act as a Lewis acid character and a base character, respectively, as determined by their spectrochemical and redox properties. Complex 5 undergoes reversible two-step one-electron reduction, and an electron paramagnetic resonance (EPR) study indicates the stepwise reduction process from Co(III)Fe(0) to form Co(III)Fe(-I) and Co(II)Fe(-I).

Details

ISSN :
1520510X and 00201669
Volume :
45
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....fd1c9f6e53ccf42740b9af62324a8461
Full Text :
https://doi.org/10.1021/ic0513282