Back to Search
Start Over
Choosing starting values for certain Newton–Raphson iterations
- Source :
- Kornerup, P & Muller, J-M 2006, ' Choosing Starting Values for Certain Newton-Raphson Iterations ', Theoretical Computer Science, vol. 351, pp. 101-110 ., Theoretical Computer Science, Theoretical Computer Science, 2006, 351 (1), pp.101-110. ⟨10.1016/j.tcs.2005.09.056⟩, Theoretical Computer Science, Elsevier, 2006, 351 (1), pp.101-110. ⟨10.1016/j.tcs.2005.09.056⟩
- Publication Year :
- 2006
- Publisher :
- Elsevier BV, 2006.
-
Abstract
- Adresse de la revue : http://www.elsevier.com/wps/find/journaldescription.cws_home/505625/description#description; We aim at finding the best possible seed values when computing $a^{\frac1p}$ using the Newton-Raphson iteration in a given interval. A natural choice of the seed value would be the one that best approximates the expected result. It turns out that in most cases, the best seed value can be quite far from this natural choice. When we evaluate a monotone function $f(a)$ in the interval $[a_{\min},a_{\max}]$, by building the sequence $x_n$ defined by the Newton-Raphson iteration, the natural choice consists in choosing $x_0$ equal to the arithmetic mean of the endpoint values. This minimizes the maximum possible distance between $x_0$ and $f(a)$. And yet, if we perform $n$ iterations, what matters is to minimize the maximum possible distance between $x_n$ and $f(a)$. In several examples, the value of the best starting point varies rather significantly with the number of iterations.
- Subjects :
- Mathematical optimization
General Computer Science
Square-Root Reciprocal
[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]
Monotonic function
Square-Root
010103 numerical & computational mathematics
02 engineering and technology
01 natural sciences
Theoretical Computer Science
symbols.namesake
Square root
0202 electrical engineering, electronic engineering, information engineering
Applied mathematics
Newton-Raphson iteration
Root Extraction
Newton raphson iteration
0101 mathematics
Newton's method
Division
Mathematics
ACM B.2.4
G.1.0
Computer arithmetic
Newton–Raphson iteration
symbols
020201 artificial intelligence & image processing
Minification
Arithmetic mean
Computer Science(all)
Subjects
Details
- ISSN :
- 03043975 and 18792294
- Volume :
- 351
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Theoretical Computer Science
- Accession number :
- edsair.doi.dedup.....fd09b9318406c22b46463e9a35ffeb8f
- Full Text :
- https://doi.org/10.1016/j.tcs.2005.09.056