Back to Search
Start Over
Deterministic particle assembly on nanophotonic chips
- Source :
- Journal of Colloid and Interface Science. 603:259-269
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Hypothesis Controlled particle assembly from a dilute suspension droplet is challenging yet important for many lab-on-a-chip and biosensing applications. The formation of hot spots on the localized surface plasmonic resonance (LSPR) substrates induced by laser excitation can generate microbubbles. These microbubbles, upon the laser removal, shrink and collapse due to electron energy dissipation, leading to guided particle assembly on the LSPR substrate. Experiments After depositing dilute silica particles dispersions on both nanoisland (AuNI) and planar gold (Au) plasmonic substrates (referred to as LSPR and SPR substrates respectively), microbubbles were formed when a laser beam was applied. Particle dispersion concentration, laser power, and the radius of circular laser sequence were varied to produce different sizes of particle clusters on the LSPR substrate after bubble shrinkage upon the laser removal. To stabilize the assembled structures over time, sodium chloride (NaCl) was ad ded to the dispersions. Findings Even though thermo-plasmonic flow and microbubbles can be produced with SPR substrates, particle assembly is only possible on LSPR substrates because of electron energy dissipation via nanoscale air gaps trapped in the LSPR substrate. By tuning the laser power, the radius of the circular laser sequence, and the particle dispersion concentration, the number of particles in the assembled structure can be controlled. The addition of NaCl to the dispersion can screen the electrostatic charges among the particles and between the particles and substrate, favoring hydrogen bonding and stabilizing the assembled structures for hours. These findings establish a new framework for utilizing nanophotonic chips where particle assembly can be achieved by a single source of light.
- Subjects :
- Materials science
Particle number
Surface plasmonic resonance
Nanophotonics
Metal Nanoparticles
Physics::Optics
02 engineering and technology
Substrate (electronics)
010402 general chemistry
01 natural sciences
law.invention
Biomaterials
Colloid and Surface Chemistry
Nanophotonic chips
law
Laser power scaling
Hot spot formation
Plasmon
business.industry
Bubble shrinkage
Self-assembly
021001 nanoscience & nanotechnology
Laser
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Optoelectronics
Particle
Gold
0210 nano-technology
business
Dispersion (chemistry)
Subjects
Details
- Language :
- English
- ISSN :
- 00219797
- Volume :
- 603
- Database :
- OpenAIRE
- Journal :
- Journal of Colloid and Interface Science
- Accession number :
- edsair.doi.dedup.....fcbda3e2038a7a3c1914f0f61def6240