Back to Search
Start Over
Shallow and undoped germanium quantum wells: a playground for spin and hybrid quantum technology
- Source :
- Advanced functional materials, (2019). doi:10.1002/adfm.201807613, info:cnr-pdr/source/autori:Sammak A.; Sabbagh D.; Hendrickx N.W.; Lodari M.; Paquelet Wuetz B.; Tosato A.; Yeoh L.; Bollani M.; Virgilio M.; Schubert M.A.; Zaumseil P.; Capellini G.; Veldhorst M.; Scappucci G./titolo:Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology/doi:10.1002%2Fadfm.201807613/rivista:Advanced functional materials (Print)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume, Advanced Functional Materials, 29(14), Advanced Functional Materials, 29
- Publication Year :
- 2019
- Publisher :
- Wiley, 2019.
-
Abstract
- Buried-channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 105 cm2 V−1 s−1) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top-gate of a dopant-less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 1011cm−2, light effective mass (0.09me), and high effective g-factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low-disorder material platform for hybrid quantum technologies.
- Subjects :
- quantum well
chemistry.chemical_element
Germanium
High Tech Systems & Materials
02 engineering and technology
spin
010402 general chemistry
01 natural sciences
Biomaterials
Condensed Matter::Materials Science
Effective mass (solid-state physics)
Electrochemistry
germanium QW
Quantum well
Surface states
Physics
Industrial Innovation
Condensed matter physics
business.industry
Heterojunction
quantum technology
021001 nanoscience & nanotechnology
Condensed Matter Physics
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
mobility
germanium
quantum devices
0104 chemical sciences
Electronic, Optical and Magnetic Materials
Quantum technology
Semiconductor
chemistry
Field-effect transistor
0210 nano-technology
business
Subjects
Details
- Language :
- English
- ISSN :
- 1616301X
- Database :
- OpenAIRE
- Journal :
- Advanced functional materials, (2019). doi:10.1002/adfm.201807613, info:cnr-pdr/source/autori:Sammak A.; Sabbagh D.; Hendrickx N.W.; Lodari M.; Paquelet Wuetz B.; Tosato A.; Yeoh L.; Bollani M.; Virgilio M.; Schubert M.A.; Zaumseil P.; Capellini G.; Veldhorst M.; Scappucci G./titolo:Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology/doi:10.1002%2Fadfm.201807613/rivista:Advanced functional materials (Print)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume, Advanced Functional Materials, 29(14), Advanced Functional Materials, 29
- Accession number :
- edsair.doi.dedup.....fc883f562798a847dbe3f73438320dd6
- Full Text :
- https://doi.org/10.1002/adfm.201807613