Back to Search Start Over

Impact of energy limitations on function and resilience in long-wavelength Photosystem II

Authors :
Stefania Viola
William Roseby
Stefano Santabarabara
Dennis Nürnberg
Ricardo Assunção
Holger Dau
Julien Sellés
Alain Boussac
Andrea Fantuzzi
A William Rutherford
Department of Life Sciences
Imperial College London
Consiglio Nazionale delle Ricerche [Milano] (CNR)
Freie Universität Berlin
Biologie du chloroplaste et perception de la lumière chez les micro-algues
Institut de biologie physico-chimique (IBPC (FR_550))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011)
ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010)
Source :
eLife, eLife, 2022, 11, pp.e79890. ⟨10.7554/eLife.79890⟩
Publication Year :
2022
Publisher :
Cold Spring Harbor Laboratory, 2022.

Abstract

Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.

Details

ISSN :
2050084X
Database :
OpenAIRE
Journal :
eLife, eLife, 2022, 11, pp.e79890. ⟨10.7554/eLife.79890⟩
Accession number :
edsair.doi.dedup.....fc513a38b3f3c0973f1380c8886c310a
Full Text :
https://doi.org/10.1101/2022.04.05.486971