Back to Search Start Over

A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project

Authors :
Barchitta, Martina
Maugeri, Andrea
Favara, Giuliana
Riela, Paolo Marco
Gallo, Giovanni
Mura, Ida
Agodi, Antonella
Paola, Murgia
Maria Dolores Masia
Silvio, Brusaferro
Daniele, Celotto
Luca, Arnoldo
Emanuela, Bissolo
Alberto, Rigo
Stefano, Tardivo
Francesca, Moretti
Alberto, Carli
Diana, Pascu
Lorella, Tessari
Mara Olga Bernasconi
Marco, Brusaferro
Federico, Pappalardo
Francesco, Auxilia
Salesia, Fenaroli
Cesira, Pasquarella
Ennio, Sicoli
Maria Teresa Montagna
Giovanni, Egitto
Raffaele, Squeri
Salvatore, Tribastoni
Alessandro, Pulvirenti
Sebastiano, Catalano
Pietro, Battaglia
Patrizia, Bellocchi
Giacomo, Castiglione
Anna Rita Mattaliano
Marinella Astuto Marinella
LA CAMERA, Giuseppa
Anna Maria Longhitano
Giorgio, Scrofani
Maria Concetta Monea
Marina, Milazzo
Antonino, Giarratano
Giuseppe, Calamusa
Maria Valeria Torregrossa
Antonino Di Benedetto
Giuseppa Maria Gisella Rizzo
Giuseppe, Manta
Romano, Tetamo
Rosa, Mancuso
Laura Maria Mella
Ignazio, Dei
Irene, Pandiani
Antonino, CannistrĂ 
Paola, Piotti
Massimo, Girardis
Elena, Righi
Alberto, Barbieri
Patricia, Crollari
Albino, Borracino
Salvatore, Coniglio
Rosaria, Palermo
Sergio, Pintaudi
Daniela Di Stefano
Antonina, Romeo
Giovanna, Sticca
Massimo, Minerva
Leila, Fabiani
Alessandra, Gentile
Paolo, Stefanini
Marcello Mario D'Errico
Abele, Donati
Santa De Remigis
Federica, Venturoni
Manuela, Antoci
Riccardo, Pagliarulo
Aida, Bianco
Maria, Pavia
Marcello, Pasculli
Cesare, Vittori
Giovanni Battista Orsi
Cristina, Arrigoni
Maria Patrizia Olori
Massimo, Antonelli
Patrizia, Laurenti
Franco, Ingala
Carmela, Conte
Salvatore, Russo
Laura, Condorelli
Patrizia, Farruggia
Cristina Maria Luisa
Italia, Galassi
Source :
The Journal of hospital infection. 112
Publication Year :
2020

Abstract

Identifying patients at higher risk of healthcare-associated infections (HAIs) in intensive care units (ICUs) represents a major challenge for public health. Machine learning could improve patient risk stratification and lead to targeted infection prevention and control interventions.To evaluate the performance of the Simplified Acute Physiology Score (SAPS) II for HAI risk prediction in ICUs, using both traditional statistical and machine learning approaches.Data for 7827 patients from the 'Italian Nosocomial Infections Surveillance in Intensive Care Units' project were used in this study. The Support Vector Machines (SVM) algorithm was applied to classify patients according to sex, patient origin, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II at admission, presence of invasive devices, trauma, impaired immunity, and antibiotic therapy in 48 h preceding ICU admission.The performance of SAPS II for predicting HAI risk provides a receiver operating characteristic curve with an area under the curve of 0.612 (P0.001) and accuracy of 56%. Considering SAPS II along with other characteristics at ICU admission, the SVM classifier was found to have accuracy of 88% and an AUC of 0.90 (P0.001) for the test set. The predictive ability was lower when considering the same SVM model but with the SAPS II variable removed (accuracy 78%, AUC 0.66).This study suggested that the SVM model is a useful tool for early prediction of patients at higher risk of HAIs at ICU admission.

Details

ISSN :
15322939
Volume :
112
Database :
OpenAIRE
Journal :
The Journal of hospital infection
Accession number :
edsair.doi.dedup.....fc37e81331e85f7e5cf49368ca2e33d1