Back to Search Start Over

Synthesis and Characterization of Sulfur-Voided Cubanes. Structural Analogues for the MoFe3S3 Subunit in the Nitrogenase Cofactor

Authors :
Namdoo Moon
Dimitri Coucouvanis
Jaehong Han
Source :
Journal of the American Chemical Society. 124:216-224
Publication Year :
2001
Publisher :
American Chemical Society (ACS), 2001.

Abstract

A new class of Mo/Fe/S clusters with the MoFe(3)S(3) core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (I), (n)Pr (II)] clusters with CO. The new clusters include those preliminarily reported: (Cl(4)-cat)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (III), (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(3)(CO)(5) (IV), (Cl(4)-cat)(Pyr)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (VI), and (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(4) (VIII). In addition the new (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(5) cluster (IVa), the (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(2)(CO)(6)cluster (V), the (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (Va), the (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VIa), and the (Cl(4)-cat)(P(n)Pr(3))MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VII) also are reported. Clusters III-VIII have been structurally and spectroscopically characterized. EPR, zero-field (57)Fe-Mössbauer spectroscopic characterizations, and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe(3)S(3) sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe(3)S(3) subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor, which also appears to have M-M bonding. On the basis of this argument, a possible N(2)-binding and reduction mechanism on the FeMoco-cofactor is proposed.

Details

ISSN :
15205126 and 00027863
Volume :
124
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....fc3275f151fecd35d319708829cf1999
Full Text :
https://doi.org/10.1021/ja0110832