Back to Search Start Over

Assessing the accuracy of prediction algorithms for classification: an overview

Authors :
Pierre Baldi
Henrik Nielsen
Claus A. Andersen
Søren Brunak
Yves Chauvin
Source :
Scopus-Elsevier
Publication Year :
2000

Abstract

4 Also at the Department of Biological Sciences, University of California, Irvine, USA, to whom all correspondence should be addressed. We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, and correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages of each approach. For classification tasks, we derive new learning algorithms for the design of prediction systems by directly optimising the correlation coefficient. We observe and prove several results relating sensitivity and specificity of optimal systems. While the principles are general, we illustrate the applicability on specific problems such as protein secondary structure and signal peptide prediction. Contact: pfbaldi@ics.uci.edu

Details

ISSN :
13674803
Volume :
16
Issue :
5
Database :
OpenAIRE
Journal :
Bioinformatics (Oxford, England)
Accession number :
edsair.doi.dedup.....fc21eda6aa6ac4bf8ca0c55c291bd6e4