Back to Search Start Over

Varying the Interpentacene Electronic Coupling to Tune Singlet Fission

Authors :
Timothy Clark
Johannes Zirzlmeier
Youn Jue Bae
Constantin Hetzer
Michael R. Wasielewski
Ilias Papadopoulos
Matthew D. Krzyaniak
Rik R. Tykwinski
Dirk M. Guldi
Source :
Journal of the American Chemical Society. 141(15)
Publication Year :
2019

Abstract

We have designed and used four different spacers, denoted A-D, to connect two pentacenes and to probe the impact of intramolecular forces on the modulation of pentacene-pentacene interactions and, in turn, on the key steps in singlet fission (SF), that is, the 1(S1S0)-to-1(T1T1) as well as 1(T1T1)-to-5(T1T1) transitions by means of transient absorption and electron paramagnetic resonance measurements. In terms of the 1(S1S0)-to-1(T1T1) transition, a superexchange mechanism, that is, coupling to a higher-lying CT state to generate a virtual intermediate, enables rapid SF in A-D. Sizeable electronic coupling in A and B opens, on one hand, an additional pathway, that is, the population of a real intermediate, and changes, on the other hand, the mechanism to that of hopping. In turn, A and B feature much higher 1(T1T1) quantum yields than C and D, with a maximum value of 162% for A. In terms of the 1(T1T1)-to-5(T1T1) transition, the sizable electronic coupling in A and B is counterproductive, and C and D give rise to higher 5(T1T1)-to-(T1 + T1) quantum yields than A and B, with a maximum value of 85% for D.

Details

ISSN :
15205126
Volume :
141
Issue :
15
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....fbf640a168aff7fadf18a88a024f492a