Back to Search
Start Over
Deficiency of Antioxidative Paraoxonase 2 (Pon2) Leads to Increased Number of Phenotypic LT-HSCs and Disturbed Erythropoiesis
- Source :
- Oxidative medicine and cellular longevity, Oxidative Medicine and Cellular Longevity, Vol 2021 (2021), Oxidative Medicine and Cellular Longevity
- Publication Year :
- 2021
- Publisher :
- Hindawi Limited, 2021.
-
Abstract
- Background. Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. Objectives. We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. Methods and Results. In young mice with inactivated Pon2 gene (Pon2-/-, -/- BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2-/- whole BM, but not in Pon2-/- LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2-/- LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2-/- LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. Conclusions. In summary, our current data indicate that PON2 is involved in the regulation of HSC functions.
- Subjects :
- Premature aging
Aging
Myeloid
Article Subject
Biology
Biochemistry
CXCR4
Antioxidants
Cell Line
Mice
medicine
Animals
Erythropoiesis
Progenitor cell
QH573-671
Aryldialkylphosphatase
Cell Differentiation
Cell Biology
General Medicine
Hematopoietic Stem Cells
Cell biology
Haematopoiesis
Phenotype
medicine.anatomical_structure
Bone marrow
Stem cell
Reactive Oxygen Species
Cytology
Research Article
Subjects
Details
- ISSN :
- 19420994 and 19420900
- Volume :
- 2021
- Database :
- OpenAIRE
- Journal :
- Oxidative Medicine and Cellular Longevity
- Accession number :
- edsair.doi.dedup.....fbe25f2205b615c3bfa97ab916451dd6