Back to Search Start Over

TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres

Authors :
Emilia Herrera-Moyano
Jean-Baptiste Vannier
Rosa Maria Porreca
Roser Gonzalez Franco
Peter Faull
Pui Pik Law
Alex Montoya
Eleni Skourti
Holger Kramer
Source :
eLife, Vol 9 (2020), eLife
Publication Year :
2020
Publisher :
eLife Sciences Publications Ltd, 2020.

Abstract

Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.

Details

Language :
English
Volume :
9
Database :
OpenAIRE
Journal :
eLife
Accession number :
edsair.doi.dedup.....fbd4675556016d12c71ba6a05c7d47f3