Back to Search Start Over

The aperiodic Domino problem in higher dimension

Authors :
de Menibus, Benjamin Hellouin
Callard, Antonin
Graphes, Algorithmes et Combinatoire (GALaC)
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Algorithmes, Apprentissage et Calcul (AAC)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Schloss Dagstuhl
Source :
39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics., 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), Mar 2022, Marseille, France. pp.1-15, ⟨10.4230/LIPIcs.STACS.2022.18⟩
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

The classical Domino problem asks whether there exists a tiling in which none of the forbidden patterns given as input appear. In this paper, we consider the aperiodic version of the Domino problem: given as input a family of forbidden patterns, does it allow an aperiodic tiling? The input may correspond to a subshift of finite type, a sofic subshift or an effective subshift. arXiv:1805.08829 proved that this problem is co-recursively enumerable ($\Pi_0^1$-complete) in dimension 2 for geometrical reasons. We show that it is much harder, namely analytic ($\Sigma_1^1$-complete), in higher dimension: $d \geq 4$ in the finite type case, $d \geq 3$ for sofic and effective subshifts. The reduction uses a subshift embedding universal computation and two additional dimensions to control periodicity. This complexity jump is surprising for two reasons: first, it separates 2- and 3-dimensional subshifts, whereas most subshift properties are the same in dimension 2 and higher; second, it is unexpectedly large.<br />Comment: 15 pages, accepted to STACS 2022

Details

Database :
OpenAIRE
Journal :
39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics., 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), Mar 2022, Marseille, France. pp.1-15, ⟨10.4230/LIPIcs.STACS.2022.18⟩
Accession number :
edsair.doi.dedup.....fb8d2ea03e9dfcedcdf9fdc7be73ce9e
Full Text :
https://doi.org/10.48550/arxiv.2202.07377