Back to Search Start Over

Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France

Authors :
Françoise Watteau
Sébastien Sauvé
Gabriel Munoz
Camille Resseguier
Valérie Sappin-Didier
Frédéric Feder
Thierry Morvan
Sabine Houot
Sung Vo Duy
Mélanie Desrosiers
Denis Montenach
Aurélia Michaud
Jinxia Liu
Min Liu
Source :
Environmental Science and Technology
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑46PFAS: 0.66 μg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑46PFAS: 220 μg/kg). Historical municipal biosolids and composts (1976–1998) were dominated by perfluorooctanesulfonate (PFOS), N-ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009–2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑160PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 μg/kg, max: 1300 μg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS.

Details

ISSN :
15205851 and 0013936X
Volume :
56
Database :
OpenAIRE
Journal :
Environmental Science & Technology
Accession number :
edsair.doi.dedup.....fb6722679e8d01289e1400444b4e20fd