Back to Search
Start Over
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
- Source :
- Atmospheric Chemistry and Physics. 22:14657-14692
- Publication Year :
- 2022
- Publisher :
- Copernicus GmbH, 2022.
-
Abstract
- The Copernicus Atmosphere Monitoring Service (CAMS) provides near-real-time forecast and reanalysis of aerosols using the ECMWF Integrated Forecasting System with atmospheric composition extension, constrained by the assimilation of MODIS and the Polar Multi-Sensor Aerosol Optical Properties (PMAp) aerosol optical depth (AOD). The objective of this work is to evaluate two new near-real-time AOD products to prepare for their assimilation into CAMS, namely the Copernicus AOD (collection 1) from the Sea and Land Surface Temperature Radiometer (SLSTR) on board Sentinel 3-A/B over ocean and the NOAA EPS AOD (v2.r1) from VIIRS on board S-NPP and NOAA20 over both land and ocean. The differences between MODIS (C6.1), PMAp (v2.1), VIIRS (v2.r1), and SLSTR (C1) AOD as well as their departure from the modeled AOD were assessed at the model grid resolution (i.e., level-3) using the 3-month AOD average (December 2019–February 2020 and March–May 2020). VIIRS and MODIS show the best consistency across the products, which is explained by instrument and retrieval algorithm similarities. VIIRS AOD is frequently lower over the ocean background and higher over biomass burning and dust source land regions compared to MODIS. VIIRS shows larger spatial coverage over land and resolves finer spatial structures such as the transport of Australian biomass burning smoke over the Pacific, which can be explained by the use of a heavy aerosol detection test in the retrieval algorithm. Our results confirm the positive offset over ocean (i) between Terra/MODIS and Aqua/MODIS due to the non-corrected radiometric calibration degradation of Terra/MODIS in the Dark Target algorithm and (ii) between SNPP/VIIRS and NOAA20/VIIRS due to the positive bias in the solar reflective bands of SNPP/VIIRS. SLSTR AOD shows much smaller level-3 values than the rest of the products, which is mainly related to differences in spatial representativity at the IFS grid spatial resolution due to the stringent cloud filtering applied to the SLSTR radiances. Finally, the geometry characteristics of the instrument, which drive the range of scattering angles sampled by the instrument, can explain a large part of the differences between retrievals such as the positive offset between PMAp datasets from MetOp-B and MetOp-A.
- Subjects :
- Atmospheric Science
Subjects
Details
- ISSN :
- 16807324
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Atmospheric Chemistry and Physics
- Accession number :
- edsair.doi.dedup.....fb5e830eb50fe26ebba56c8cc14c4cb5