Back to Search Start Over

Deep Learning-Based Intrusion Detection Systems: A Systematic Review

Authors :
Saqib Ali
Mehdi Hosseinzadeh
Mohammed Kamal Majeed
Sarkhel H. Taher Karim
Amir Masoud Rahmani
Jan Lansky
Mokhtar Mohammadi
Shima Rashidi
Source :
IEEE Access, Vol 9, Pp 101574-101599 (2021)
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

Nowadays, the ever-increasing complication and severity of security attacks on computer networks have inspired security researchers to incorporate different machine learning methods to protect the organizations’ data and reputation. Deep learning is one of the exciting techniques which recently are vastly employed by the IDS or intrusion detection systems to increase their performance in securing the computer networks and hosts. This survey article focuses on the deep learning-based intrusion detection schemes and puts forward an in-depth survey and classification of these schemes. It first presents the primary background concepts about IDS architecture and various deep learning techniques. It then classifies these schemes according to the type of deep learning methods utilized in each of them. It describes how deep learning networks are utilized in the intrusion detection process to recognize intrusions accurately. Finally, a complete analysis of the investigated IDS frameworks is provided, and concluding remarks and future directions are highlighted.

Details

ISSN :
21693536
Volume :
9
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....fb36638ab5c175f76aa4107d6c186372
Full Text :
https://doi.org/10.1109/access.2021.3097247