Back to Search Start Over

Enumerating the edge-colourings and total colourings of a regular graph

Authors :
Frédéric Havet
Stéphane Bessy
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Combinatorics, Optimization and Algorithms for Telecommunications (COATI)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
ANR
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE)
INRIA
Bessy, Stéphane
Source :
2012 Workshop on Graph Theory and Combinatorics, 2012 Workshop on Graph Theory and Combinatorics, Aug 2012, National Sun Yat-sen University, Kaohsiung, Taiwan, Journal of Combinatorial Optimization, Journal of Combinatorial Optimization, 2013, 25 (4), pp.523-535. ⟨10.1007/s10878-011-9448-5⟩, Journal of Combinatorial Optimization, Springer Verlag, 2013, 25 (4), pp.523-535. ⟨10.1007/s10878-011-9448-5⟩, [Research Report] RR-7652, INRIA. 2011
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In this paper, we are interested in computing the number of edge colourings and total colourings of a connected graph. We prove that the maximum number of $k$-edge-colourings of a connected $k$-regular graph on $n$ vertices is $k\cdot((k-1)!)^{n/2}$. Our proof is constructive and leads to a branching algorithm enumerating all the $k$-edge-colourings of a connected $k$-regular graph in time $O^*(((k-1)!)^{n/2})$ and polynomial space. In particular, we obtain a algorithm to enumerate all the $3$-edge-colourings of a connected cubic graph in time $O^*(2^{n/2})=O^*(1.4143^n)$ and polynomial space. This improves the running time of $O^*(1.5423^n)$ of the algorithm due to Golovach et al.~\cite{GKC10}. We also show that the number of $4$-total-colourings of a connected cubic graph is at most $3\cdot 2^{3n/2}$. Again, our proof yields a branching algorithm to enumerate all the $4$-total-colourings of a connected cubic graph.

Details

Language :
English
ISSN :
13826905 and 15732886
Database :
OpenAIRE
Journal :
2012 Workshop on Graph Theory and Combinatorics, 2012 Workshop on Graph Theory and Combinatorics, Aug 2012, National Sun Yat-sen University, Kaohsiung, Taiwan, Journal of Combinatorial Optimization, Journal of Combinatorial Optimization, 2013, 25 (4), pp.523-535. ⟨10.1007/s10878-011-9448-5⟩, Journal of Combinatorial Optimization, Springer Verlag, 2013, 25 (4), pp.523-535. ⟨10.1007/s10878-011-9448-5⟩, [Research Report] RR-7652, INRIA. 2011
Accession number :
edsair.doi.dedup.....fb2d4d7e27c61fb30c20e5c301fc662b
Full Text :
https://doi.org/10.1007/s10878-011-9448-5⟩