Back to Search Start Over

Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model

Authors :
Ishan Patil
Harsh Sancheti
Bangyan L. Stiles
Enrique Cadenas
Source :
PLoS ONE, PLoS ONE, Vol 13, Iss 9, p e0204043 (2018)
Publication Year :
2018

Abstract

Insulin resistance–as observed in aging, diabetes, obesity, and other pathophysiological situations, affects brain function, for insulin signaling is responsible for neuronal glucose transport and control of energy homeostasis and is involved in the regulation of neuronal growth and synaptic plasticity. This study investigates brain metabolism and function in a liver-specific Phosphatase and Tensin Homologue (Pten) knockout mouse model (Liver-PtenKO), a negative regulator of insulin signaling. The Liver-PtenKO mouse model showed an increased flux of glucose into the liver–thus resulting in an overall hypoglycemic and hypoinsulinemic state–and significantly lower hepatic production of the ketone body beta-hydroxybutyrate (as compared with age-matched control mice). The Liver-PtenKO mice exhibited increased brain glucose uptake, improved rate of glycolysis and flux of metabolites in the TCA cycle, and improved synaptic plasticity in the hippocampus. Brain slices from both control- and Liver-PtenKO mice responded to the addition of insulin (in terms of pAKT/AKT levels), thereby neglecting an insulin resistance scenario. This study underscores the significance of insulin signaling in brain bioenergetics and function and helps recognize deficits in diseases associated with insulin resistance.

Details

ISSN :
19326203
Volume :
13
Issue :
9
Database :
OpenAIRE
Journal :
PloS one
Accession number :
edsair.doi.dedup.....fafffce5496220752549188a2fb2aeef