Back to Search
Start Over
An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection
- Source :
- Scientific Reports, Vol 10, Iss 1, Pp 1-11 (2020), Scientific Reports
- Publication Year :
- 2020
- Publisher :
- Nature Portfolio, 2020.
-
Abstract
- We developed an inexpensive, portable platform for urea detection via electrochemistry by depositing silver nanoparticles (AgNPs) on a commercial glucose test strip. We modified this strip by first removing the enzymes from the surface, followed by electrodeposition of AgNPs on one channel (working electrode). The morphology of the modified test strip was characterized by Scanning Electron Microscopy (SEM), and its electrochemical performance was evaluated via Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). We evaluated the performance of the device for urea detection via measurements of the dependency of peak currents vs the analyte concentration and from the relationship between the peak current and the square root of the scan rates. The observed linear range is 1–8 mM (corresponding to the physiological range of urea concentration in human blood), and the limit of detection (LOD) is 0.14 mM. The selectivity, reproducibility, reusability, and storage stability of the modified test strips are also reported. Additional tests were performed to validate the ability to measure urea in the presence of confounding factors such as spiked plasma and milk. The results demonstrate the potential of this simple and portable EC platform to be used in applications such as medical diagnosis and food safety.
- Subjects :
- Materials for devices
Analyte
Working electrode
Materials science
Science
02 engineering and technology
010402 general chemistry
01 natural sciences
Article
chemistry.chemical_compound
medicine
Glucose test
Detection limit
Multidisciplinary
Chromatography
medicine.diagnostic_test
021001 nanoscience & nanotechnology
Sensors and biosensors
0104 chemical sciences
Dielectric spectroscopy
Linear range
chemistry
Urea
Medicine
Cyclic voltammetry
0210 nano-technology
Biomedical engineering
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 10
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....fafa92515708e1249d7707845c949bed