Back to Search
Start Over
Computer Automated Multi-Paradigm Modelling for Analysis and Design of Traffic Networks
- Source :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Scopus-Elsevier
- Publication Year :
- 2005
- Publisher :
- IEEE, 2005.
-
Abstract
- Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. H. Vangheluwe, and J. de Lara, "Computer automated multi-paradigm modelling for analysis and design of traffic networks", Proceedings of the 2004 Winter Simulation Conference, 2004, Volumen 1, Heidelberg, Germany, 2004<br />Computer automated multiparadigm modelling (CAMPaM) is an enabler for domain-specific analysis and design. Traffic, a new untimed visual formalism for vehicle traffic networks, is introduced. The syntax of traffic models is meta-modelled in the entity-relationship diagrams formalism. From this, augmented with concrete syntax information, a visual modelling environment is synthesized using our CAMPaM tool AToM3, a tool for multiformalism and meta-modelling. The semantics of the traffic formalism is subsequently modelled by mapping traffic models onto Petri net models. As models' abstract syntax is graph-like, graph rewriting can be used to transform models. The advantages of a domain-specific formalism such as traffic as opposed to a generic formalism such as Petri nets are presented. We demonstrate how mapping onto Petri nets allows one to employ the vast array of Petri net analysis techniques. A coverability graph is generated and conservation analysis is automated by transforming this graph into an integer linear programming specification<br />Juan de Lara’s work has been partially sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project number TIC2002-01948. Hans Vangheluwe gratefully acknowledges partial support for this work by a National Sciences and Engineering Research Council of Canada (NSERC) Individual Research Grant. The authors wish to thank Ms. Sokhom Pheng for her work on the Petri Net conservation analysis during her “Modelling and Simulation Based Design” project at McGill University
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of the 2004 Winter Simulation Conference, 2004.
- Accession number :
- edsair.doi.dedup.....fae7caca2a652384e0019e6a03c2db8a
- Full Text :
- https://doi.org/10.1109/wsc.2004.1371323