Back to Search Start Over

Influence of Circumferential Placement Position of Guide Vanes on Performance and Dynamic Characteristics of Nuclear Reactor Coolant Pump

Authors :
Dorah N
Xiaorui Cheng
Ningning Jia
Chenying Ji
Boru Lv
Source :
Mathematical Problems in Engineering, Vol 2020 (2020)
Publication Year :
2020
Publisher :
Hindawi Limited, 2020.

Abstract

In order to study the influence of the circumferential placement position of the guide vane on the flow field and stress-strain of a nuclear reactor coolant pump, the CAP1400 nuclear reactor coolant pump is taken as the research object. Based on numerical calculation and test results, the influence of circumferential placement position of the guide vane on the performance of the nuclear reactor coolant pump and stress-strain of guide vanes are analyzed by the unidirectional fluid-solid coupling method. The results show that the physical model and calculation method used in the study can accurately reflect the influence of the circumferential placement position of the guide vane on the nuclear reactor coolant pump. In the design condition, guide vane position has a great influence on the nuclear reactor coolant pump efficiency value, suction surface of the guide vane blade, and the maximum equivalent stress on the hub. However, it has a weak effect on the head value, pressure surface of the guide vane blade, and the maximum equivalent stress on the shroud. When the center line of the outlet diffuser channel of the case is located at the center of the outlet of flow channel of the guide vane, it is an optimal guide vane circumferential placement position, which can reduce the hydraulic loss of half of the case. Finally, it is found that the high stress concentration area is at the intersection of the exit edge of the vane blade and the front and rear cover, and the exit edge of the guide vane blade and its intersection with the front cover are areas where the strength damage is most likely to occur. This study provides a reference for nuclear reactor coolant pump installation, shock absorption design, and structural optimization.

Details

ISSN :
15635147 and 1024123X
Volume :
2020
Database :
OpenAIRE
Journal :
Mathematical Problems in Engineering
Accession number :
edsair.doi.dedup.....fad311b04f0d840fe6fce936a4c0fde4