Back to Search Start Over

Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold

Authors :
Parviz Ranjbarvan
Masoud Soleimani
Javad Verdi
Jafar Ai
Reza Faridi Majidi
Ali Samadi Kuchaksaraei
Source :
Microscopy Research and Technique. 80:495-503
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Skin is the largest organ of the human body. Thus far, tissue engineering of skin has developed rapidly and has used many types of growth factors and nanofibrous scaffolds. In this study, we differentiated neonate keratinocytes for epithelialization on the polycaprolactone-Platelet gel (PCL-PG) scaffold. Fabricated PCL nanofibers prepared by electrospinning technology and coated by platelet gel. Subsequently, the structure of the scaffold was evaluated by SEM, FTIR-ATR, contact angle and tensile test assays. After seeding the neonate keratinocytes on neat PCL and PCL-PG scaffolds, the epidermal maturation was tested by detecting cytokeratin 10 and loricrin determinants by immunocytochemistry; moreover, keratinocyte genes such as keratin 14, keratin 10, and Involucrin were investigated by real-time PCR. The results of MTT assay indicated an increase in cell viability and cell proliferation of neonate keratinocytes on PCL-PG nanofiber scaffolds compared with PCL. RT-PCR and immunocytochemical analysis showed better cell differentiation on the PCL-PG scaffolds than neat PCL. Furthermore, SEM microscopy images demonstrated that neo-keratinocytes enhance adhesion and proliferation on PCL-PG nanofiber scaffolds. We found that PG increases biocompatibility and wettability of scaffold, cell adhesion, and expression of keratinocyte markers. Overall, this procedure is recommended to be employed in skin tissue engineering and wounds healing.

Details

ISSN :
1059910X
Volume :
80
Database :
OpenAIRE
Journal :
Microscopy Research and Technique
Accession number :
edsair.doi.dedup.....fab8cdcff67579fba25f1dd82e9e28e3
Full Text :
https://doi.org/10.1002/jemt.22821