Back to Search Start Over

Video-Based Heartbeat Rate Measuring Method Using Ballistocardiography

Authors :
Mohamed Abul Hassan
Yasir Salih Ali
David Fofi
Fabrice Meriaudeau
Aamir Saeed Malik
Naufal Mohamed Saad
Centre for Intelligent Signal and Imaging Research [Petronas] (CISIR)
Universiti Teknologi PETRONAS (UTP)
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i)
Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Science and Technology Unit, Umm Al Qura University
Umm Al-Qura University
HiCoE grant for CISIR, Ministry of Education (MOE), Malaysia 0153CA-002
Centre for Intelligent Signal and Imaging Research (Universiti Teknologi Petronas) ( CISIR )
Laboratoire d'Electronique, d'Informatique et d'Image UMR CNRS 6306 ( Le2i )
Université de Technologie de Belfort-Montbeliard ( UTBM ) -Université de Bourgogne ( UB ) -École Nationale Supérieure d'Arts et Métiers ( ENSAM ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS )
Source :
IEEE Sensors Journal, IEEE Sensors Journal, Institute of Electrical and Electronics Engineers, 2017, 17 (14), pp.4544-4557. ⟨10.1109/JSEN.2017.2708133⟩, IEEE Sensors Journal, Institute of Electrical and Electronics Engineers, 2017, 17 (14), pp.4544-4557. 〈http://ieeexplore.ieee.org/document/7935342/〉. 〈10.1109/JSEN.2017.2708133〉
Publication Year :
2017
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2017.

Abstract

International audience; Video-based heartbeat rate measurement is a rapidly growing application in remote health monitoring. Video-based heartbeat rate measuring methods operate mainly by estimating photoplethysmography or ballistocardiography signals. These methods operate by estimating the microscopic color change in the face or by estimating the microscopic rigid motion of the head/facial skin. However, the robustness to motion artifacts caused by illumination variance and motion variance of the subject poses main challenge. We present a video-based heartbeat rate measuring framework to overcome these problems by using the principle of ballistocardiography. In this paper, we proposed a ballistocardiography model based on Newtons third law of force and dynamics of harmonic oscillation. We formulate a framework based on the ballistocardiography model to measure the rigid involuntary head motion caused by the ejection of the blood from the heart. Our proposed framework operates by estimating the motion of multivariate feature points to estimate the heartbeat rate autonomously. We evaluated our proposed framework along with existing video-based heartbeat rate measuring methods with three databases, namely; MAHNOB HCI database, human-computer interaction database, and driver health monitoring database. Our proposed framework outperformed existing methods by reporting a low mean error rate of 4.34 bpm with a standard deviation of 3.14 bpm, root mean square error of 5.29 with a high Pearson correlation coefficient of 0.91. The proposed method also operated robustly in the human-computer interaction database and driver health monitoring database by overcoming the issues related to illumination and motion variance.

Details

ISSN :
23799153 and 1530437X
Volume :
17
Database :
OpenAIRE
Journal :
IEEE Sensors Journal
Accession number :
edsair.doi.dedup.....fab3d322a342103ae75a6a4f5b9a2c04
Full Text :
https://doi.org/10.1109/jsen.2017.2708133