Back to Search
Start Over
Spin drift and diffusion in one- and two-subband helical systems
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- The theory of spin drift and diffusion in two-dimensional electron gases is developed in terms of a random walk model incorporating Rashba, linear and cubic Dresselhaus, and intersubband spin-orbit couplings. The additional subband degree of freedom introduces new characteristics to the persistent spin helix (PSH) dynamics. As has been described before, for negligible intersubband scattering rates, the sum of the magnetization of independent subbands leads to a checkerboard pattern of crossed PSHs with long spin lifetime. For strong intersubband scattering we model the fast subband dynamics as a new random variable, yielding a dynamics set by averaged spin-orbit couplings of both subbands. In this case the crossed PSH becomes isotropic, rendering circular (Bessel) patterns with short spin lifetime. Additionally, a finite drift velocity breaks the symmetry between parallel and transverse directions, distorting and dragging the patterns. We find that the maximum spin lifetime shifts away from the PSH regime with increasing drift velocity. We present approximate analytical solutions for these cases and define their domain of validity. Effects of magnetic fields and initial package broadening are also discussed.<br />Comment: 14 pages, 6 figures
- Subjects :
- Physics
Drift velocity
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed matter physics
Scattering
FOS: Physical sciences
02 engineering and technology
Electron
021001 nanoscience & nanotechnology
Random walk
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
01 natural sciences
Symmetry (physics)
Magnetic field
SPINTRÔNICA
0103 physical sciences
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Diffusion (business)
010306 general physics
0210 nano-technology
Spin-½
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....faa447d7e45916ca6a3bb6c9753b7f37
- Full Text :
- https://doi.org/10.48550/arxiv.1608.05437