Back to Search Start Over

Parallelization of Hierarchical Matrix Algorithms for Electromagnetic Scattering Problems

Authors :
Larsson, E.
Zafari, A.
Righero, M.
Francavilla, M.A.
Giordanengo, G.
Vipiana, F.
Vecchi, G.
Kessler, C.
Ancourt, C.
Grelck, C.
Kołodziej, J.
González-Vélez, H.
Uppsala University
Department of Information Technology (DIT-UPPSALA)
Antenna and Electromagnetic Compatibility Laboratory (Politecnico di Torino) (LACE)
ASML Netherlands BV, De Run 6501, NL-5504 DR Veldhoven, Netherlands
Department of Electronics and Telecommunications [Torino] (DET)
Politecnico di Torino = Polytechnic of Turin (Polito)
Department of Computer and Information Science - Linköping University
Linköping University (LIU)
Centre de Recherche en Informatique (CRI)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université Paris sciences et lettres (PSL)
ISLA - Informatics Institute (UNIVERSITY OF AMSTERDAM)
University of Amsterdam [Amsterdam] (UvA)
Parallel Computing Systems (IvI, FNWI)
Source :
High-Performance Modelling and Simulation for Big Data Applications, High-Performance Modelling and Simulation for Big Data Applications, pp.36-68, 2019, 978-3-030-16272-6. ⟨10.1007/978-3-030-16272-6_2⟩, High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet, 36-68, STARTPAGE=36;ENDPAGE=68;TITLE=High-Performance Modelling and Simulation for Big Data Applications, Lecture Notes in Computer Science ISBN: 9783030162719
Publication Year :
2019

Abstract

International audience; Numerical solution methods for electromagnetic scattering problems lead to large systems of equations with millions or even billions of unknown variables. The coefficient matrices are dense, leading to large computational costs and storage requirements if direct methods are used. A commonly used technique is to instead form a hierarchical representation for the parts of the matrix that corresponds to far-field interactions. The overall computational cost and storage requirements can then be reduced to O(N log N). This still corresponds to a large-scale simulation that requires parallel implementation. The hierarchical algorithms are rather complex, both regarding data dependencies and communication patterns, making parallelization non-trivial. In this chapter, we describe two classes of algorithms in some detail, we provide a survey of existing solutions, we show results for a proof-of-concept implementation, and we provide various perspectives on different aspects of the problem. The list of authors is organized into three subgroups, Larsson and Zafari (coordination and proof-of-concept implementation), Righero, Francavilla, Giordanengo, Vipiana, and Vecchi (definition of and expertise relating to the application), Kessler, Ancourt, and Grelck (perspectives and parallel expertise).

Details

Language :
English
ISBN :
978-3-030-16272-6
978-3-030-16271-9
ISSN :
03029743
ISBNs :
9783030162726 and 9783030162719
Database :
OpenAIRE
Journal :
High-Performance Modelling and Simulation for Big Data Applications
Accession number :
edsair.doi.dedup.....fa864c7c66e34f47e347a3ff61adc1d8
Full Text :
https://doi.org/10.1007/978-3-030-16272-6_2