Back to Search
Start Over
Fluctuations of extreme eigenvalues of sparse Erdős–Rényi graphs
- Source :
- Probability Theory and Related Fields
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We consider a class of sparse random matrices which includes the adjacency matrix of the Erdős–Rényi graph $${{\mathcal {G}}}(N,p)$$ G ( N , p ) . We show that if $$N^{\varepsilon } \leqslant Np \leqslant N^{1/3-\varepsilon }$$ N ε ⩽ N p ⩽ N 1 / 3 - ε then all nontrivial eigenvalues away from 0 have asymptotically Gaussian fluctuations. These fluctuations are governed by a single random variable, which has the interpretation of the total degree of the graph. This extends the result (Huang et al. in Ann Prob 48:916–962, 2020) on the fluctuations of the extreme eigenvalues from $$Np \geqslant N^{2/9 + \varepsilon }$$ N p ⩾ N 2 / 9 + ε down to the optimal scale $$Np \geqslant N^{\varepsilon }$$ N p ⩾ N ε . The main technical achievement of our proof is a rigidity bound of accuracy $$N^{-1/2-\varepsilon } (Np)^{-1/2}$$ N - 1 / 2 - ε ( N p ) - 1 / 2 for the extreme eigenvalues, which avoids the $$(Np)^{-1}$$ ( N p ) - 1 -expansions from Erdős et al. (Ann Prob 41:2279–2375, 2013), Huang et al. (2020) and Lee and Schnelli (Prob Theor Rel Fields 171:543–616, 2018). Our result is the last missing piece, added to Erdős et al. (Commun Math Phys 314:587–640, 2012), He (Bulk eigenvalue fluctuations of sparse random matrices. arXiv:1904.07140), Huang et al. (2020) and Lee and Schnelli (2018), of a complete description of the eigenvalue fluctuations of sparse random matrices for $$Np \geqslant N^{\varepsilon }$$ N p ⩾ N ε .
- Subjects :
- Statistics and Probability
Gaussian
05C80
Scale (descriptive set theory)
01 natural sciences
Article
Interpretation (model theory)
Combinatorics
010104 statistics & probability
symbols.namesake
510 Mathematics
1804 Statistics, Probability and Uncertainty
Adjacency matrix
2613 Statistics and Probability
0101 mathematics
Eigenvalues and eigenvectors
Mathematics
60B20
2603 Analysis
Statistics
010102 general mathematics
15B52
Graph
10123 Institute of Mathematics
symbols
Probability and Uncertainty
05C50
Statistics, Probability and Uncertainty
Random matrix
Random variable
Analysis
Subjects
Details
- ISSN :
- 14322064 and 01788051
- Database :
- OpenAIRE
- Journal :
- Probability Theory and Related Fields
- Accession number :
- edsair.doi.dedup.....fa859aee4ab601a9bab53680918b5f90
- Full Text :
- https://doi.org/10.1007/s00440-021-01054-4