Back to Search Start Over

Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features

Authors :
Laurence Lafanechère
Carl Murie
Robert Nadon
Caroline Barette
Genetics and Chemogenomics (GenChem)
Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB)
Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM)
Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Biomolecular Screening, Journal of Biomolecular Screening, SAGE Publications, 2014, 19 (5), pp.661-671. ⟨10.1177/1087057113516003⟩, Journal of Biomolecular Screening, 2014, 19 (5), pp.661-671. ⟨10.1177/1087057113516003⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Systematic error is present in all high-throughput screens, lowering measurement accuracy. Because screening occurs at the early stages of research projects, measurement inaccuracy leads to following up inactive features and failing to follow up active features. Current normalization methods take advantage of the fact that most primary-screen features (e.g., compounds) within each plate are inactive, which permits robust estimates of row and column systematic-error effects. Screens that contain a majority of potentially active features pose a more difficult challenge because even the most robust normalization methods will remove at least some of the biological signal. Control plates that contain the same feature in all wells can provide a solution to this problem by providing well-by-well estimates of systematic error, which can then be removed from the treatment plates. We introduce the robust control-plate regression (CPR) method, which uses this approach. CPR's performance is compared to a high-performing primary-screen normalization method in four experiments. These data were also perturbed to simulate screens with large numbers of active features to further assess CPR's performance. CPR performs almost as well as the best performing normalization methods with primary screens and outperforms the Z-score and equivalent methods with screens containing a large proportion of active features.

Details

Language :
English
ISSN :
10870571
Database :
OpenAIRE
Journal :
Journal of Biomolecular Screening, Journal of Biomolecular Screening, SAGE Publications, 2014, 19 (5), pp.661-671. ⟨10.1177/1087057113516003⟩, Journal of Biomolecular Screening, 2014, 19 (5), pp.661-671. ⟨10.1177/1087057113516003⟩
Accession number :
edsair.doi.dedup.....fa43fa5416844954dacfdf578a3da36c