Back to Search Start Over

Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway

Authors :
Damien Sorigué
Yonghua Li-Beisson
Pablo Morales
Reinhard Jetter
Bertrand Legeret
Fred Beisson
Geneviève Guedeney
Gilles Peltier
Boris Mirabella
Stéphan Cuiné
Environnement, Bioénergie, Microalgues et Plantes (EBMP)
Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Department of Botany [Vancouver] (UBC Botany)
University of British Columbia (UBC)
Bioénergie et Microalgues (EBM)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Synthèse et étude de systèmes à intêret biologique (SEESIB)
Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)
APHIS, International Services
United States Department of Agriculture
Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE)
Biologie et Biotechnologie des Cyanobactéries (B2CYA)
Département Microbiologie (Dpt Microbio)
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Dept Bot
Source :
Plant Physiology, Plant Physiology, 2016, pp.00462.2016. ⟨10.1104/pp.16.00462⟩, Plant Physiology, American Society of Plant Biologists, 2016, pp.00462.2016. ⟨10.1104/pp.16.00462⟩
Publication Year :
2016

Abstract

Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway.

Details

ISSN :
15322548 and 00320889
Volume :
171
Issue :
4
Database :
OpenAIRE
Journal :
Plant physiology
Accession number :
edsair.doi.dedup.....fa1699df123afba3271d20ba1a7fe283