Back to Search Start Over

Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms

Authors :
Sahradha Albert
Ricardo D. Righetto
Emmanuel Moebel
Charles Kervrann
Tingying Peng
Antonio Martinez-Sanchez
Julio O. Ortiz
Wojciech Wietrzynski
Stefan Pfeffer
Lorenz Lamm
Damien Larivière
Benjamin D. Engel
Wolfgang Baumeister
Eric Fourmentin
Space-timE RePresentation, Imaging and cellular dynamics of molecular COmplexes (SERPICO)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Universidad de Oviedo [Oviedo]
Helmholtz Zentrum München = German Research Center for Environmental Health
Max-Planck-Institut für Biochemie = Max Planck Institute of Biochemistry (MPIB)
Max-Planck-Gesellschaft
Fondation Scientifique Fourmentin-Guilbert
Helmholtz-Zentrum München (HZM)
Max Planck Institute of Biochemistry (MPIB)
Kervrann, Charles
Source :
Nature Methods, Nature Methods, 2021, 18 (11), pp.1386-1394. ⟨10.1038/s41592-021-01275-4⟩, Nature Methods, Nature Publishing Group, 2021, 18 (11), pp.1386-1394. ⟨10.1038/s41592-021-01275-4⟩, Nature methods 18(11), 1386-1394 (2021). doi:10.1038/s41592-021-01275-4, Nat. Methods 18, 1386-1394 (2021), BioImage Informatics 2021, BioImage Informatics 2021, Nov 2021, Paris, France. pp.1-43, BioImage Informatics 2021 (selected talk), BioImage Informatics 2021 (selected talk), Nov 2021, Paris, France
Publication Year :
2021

Abstract

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase–oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms. DeepFinder is a deep learning-based tool for identifying macromolecules in cellular cryo-electron tomograms. DeepFinder performs with an accuracy comparable to expert-supervised ground truth annotations on multiple experimental datasets.

Details

Language :
English
ISSN :
15487091 and 15487105
Database :
OpenAIRE
Journal :
Nature Methods, Nature Methods, 2021, 18 (11), pp.1386-1394. ⟨10.1038/s41592-021-01275-4⟩, Nature Methods, Nature Publishing Group, 2021, 18 (11), pp.1386-1394. ⟨10.1038/s41592-021-01275-4⟩, Nature methods 18(11), 1386-1394 (2021). doi:10.1038/s41592-021-01275-4, Nat. Methods 18, 1386-1394 (2021), BioImage Informatics 2021, BioImage Informatics 2021, Nov 2021, Paris, France. pp.1-43, BioImage Informatics 2021 (selected talk), BioImage Informatics 2021 (selected talk), Nov 2021, Paris, France
Accession number :
edsair.doi.dedup.....fa11ecb734146eafaab67196e1daef66
Full Text :
https://doi.org/10.1038/s41592-021-01275-4⟩