Back to Search Start Over

Determining the Liquid Light Scattering Cross Section and Depolarization Spectra Using Polarized Resonance Synchronous Spectroscopy

Authors :
Shengli Zou
Dongmao Zhang
Yadong Zhou
Sumudu Athukorale
Source :
Analytical Chemistry. 89:12705-12712
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

Rayleigh scattering is a universal material property because all materials have nonzero polarizability. Reliable quantification of the material light scattering cross section in the liquid phase and its depolarization spectra is, however, challenging due to a host of sample and instrument issues. Using the recently developed polarized resonance synchronous spectroscopic method, we reported the light scattering cross section and depolarization spectra measured for a total of 29 liquids including water, methanol, ethanol, 1-propanol, 1-butanol, dimethylformamide, carbon disulfide, dimethyl sulfoxide, hexane and two hexane isomers (3-methylpentane and 2,3-dimethylbutane), tetrahydrofuran, cyclohexane, acetonitrile, pyridine, chloromethanes including di-, tri, tetrachloromethane, acetone, benzene and eight benzene derivatives (toluene, fluorobenzene, 1,2-, 1,3-, and 1,4-difluorobenzene, chlorobenzene, 1,2- and 1,3-dichlorobenzene, and nitrobenzene). The solvent light scattering depolarization is wavelength-independent for the model solvents, and it varies from 0.023 ± 0.011 for CCl

Details

ISSN :
15206882 and 00032700
Volume :
89
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....fa1039d75295840f99daa7773c17ad80
Full Text :
https://doi.org/10.1021/acs.analchem.7b02721