Back to Search
Start Over
Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance
- Source :
- Journal of bacteriology. 180(17)
- Publication Year :
- 1998
-
Abstract
- Listeria monocytogenes is well known for its robust physiology, which permits growth at low temperatures under conditions of high osmolarity and low pH. Although studies have provided insight into the mechanisms used by L. monocytogenes to allay the physiological consequences of these adverse environments, little is known about how these responses are coordinated. In the studies presented here, we have cloned the sigB gene and several rsb genes from L. monocytogenes , encoding homologs of the alternative sigma factor ς B and the RsbUVWX proteins, which govern transcription of a general stress regulon in the related bacterium Bacillus subtilis . The L. monocytogenes and B. subtilis sigB and rsb genes are similar in sequence and physical organization; however, we observed that the activity of ς B in L. monocytogenes was uniquely responsive to osmotic upshifting, temperature downshifting, and the presence of EDTA in the growth medium. The magnitude of the response was greatest after an osmotic upshift, suggesting a role for ς B in coordinating osmotic responses in L. monocytogenes . A null mutation in the sigB gene led to substantial defects in the ability of L. monocytogenes to use betaine and carnitine as osmoprotectants. Subsequent measurements of betaine transport confirmed that the absence of ς B reduced the ability of the cells to accumulate betaine. Thus, ς B coordinates responses to a variety of physical and chemical signals, and its function facilitates the growth of L. monocytogenes under conditions of high osmotic strength.
- Subjects :
- DNA, Bacterial
Molecular Sequence Data
Sigma Factor
Genetics and Molecular Biology
Bacillus subtilis
Biology
medicine.disease_cause
Microbiology
chemistry.chemical_compound
Betaine
Listeria monocytogenes
Bacterial Proteins
Sigma factor
medicine
Amino Acid Sequence
Cloning, Molecular
Molecular Biology
Gene
Osmotic concentration
Base Sequence
Sequence Homology, Amino Acid
Osmolar Concentration
biology.organism_classification
Adaptation, Physiological
Cell biology
Regulon
chemistry
Mutation
Osmoprotectant
Subjects
Details
- ISSN :
- 00219193
- Volume :
- 180
- Issue :
- 17
- Database :
- OpenAIRE
- Journal :
- Journal of bacteriology
- Accession number :
- edsair.doi.dedup.....f9db07f023acee3e955f09f11ba93c47