Back to Search
Start Over
Parametric binomial sums involving harmonic numbers
- Publication Year :
- 2021
- Publisher :
- arXiv, 2021.
-
Abstract
- We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for $$p=0,1,2$$ and $$|t|\le 1$$ . $$\begin{aligned} \sum _{k=1}^{\infty }\frac{H_{k-1}t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) } \quad \text{ and }\quad \sum _{k=1}^{\infty }\frac{t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) }. \end{aligned}$$ We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications. $$\begin{aligned} \zeta (n+1)=\sum _{k=n}^{\infty }\frac{s(k,n)}{kk!}, \quad n=1,2,3,\ldots . \end{aligned}$$ As examples, $$\begin{aligned} \zeta (3)=\frac{1}{7}\sum _{k=1}^{\infty }\frac{H_{k-1}4^k}{k^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \quad \text{ and }\quad \zeta (3)=\frac{8}{7}+\frac{1}{7}\sum _{k=1}^{\infty } \frac{H_{k-1}4^k}{k^2(2k+1)\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \end{aligned}$$ which are new series representations for the Apery constant $$\zeta (3)$$ .
- Subjects :
- Binomial (polynomial)
Mathematics::Number Theory
Stirling numbers of the first kind
01 natural sciences
Apéry's constant
Combinatorics
symbols.namesake
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
Harmonic number
Number Theory (math.NT)
0101 mathematics
Mathematics
Primary 05A10, 05A19, Secondary 33C20
Algebra and Number Theory
Mathematics - Number Theory
Series (mathematics)
Applied Mathematics
010102 general mathematics
Riemann zeta function
010101 applied mathematics
Computational Mathematics
Mathematics - Classical Analysis and ODEs
symbols
Geometry and Topology
Polygamma function
Analysis
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....f9967efe4ae050f77d3d348912f0e959
- Full Text :
- https://doi.org/10.48550/arxiv.2105.03927