Back to Search Start Over

Parametric binomial sums involving harmonic numbers

Authors :
Necdet Batir
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for $$p=0,1,2$$ and $$|t|\le 1$$ . $$\begin{aligned} \sum _{k=1}^{\infty }\frac{H_{k-1}t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) } \quad \text{ and }\quad \sum _{k=1}^{\infty }\frac{t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) }. \end{aligned}$$ We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications. $$\begin{aligned} \zeta (n+1)=\sum _{k=n}^{\infty }\frac{s(k,n)}{kk!}, \quad n=1,2,3,\ldots . \end{aligned}$$ As examples, $$\begin{aligned} \zeta (3)=\frac{1}{7}\sum _{k=1}^{\infty }\frac{H_{k-1}4^k}{k^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \quad \text{ and }\quad \zeta (3)=\frac{8}{7}+\frac{1}{7}\sum _{k=1}^{\infty } \frac{H_{k-1}4^k}{k^2(2k+1)\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \end{aligned}$$ which are new series representations for the Apery constant $$\zeta (3)$$ .

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f9967efe4ae050f77d3d348912f0e959
Full Text :
https://doi.org/10.48550/arxiv.2105.03927