Back to Search Start Over

Risk prediction models for out-of-hospital cardiac arrest outcomes in England

Authors :
Chen Ji
James Mapstone
Rachael T Fothergill
Sarah Black
Robert Spaight
Scott J. Booth
Terry Brown
Jerry P. Nolan
Gavin D. Perkins
Claire Hawkes
Source :
Eur Heart J Qual Care Clin Outcomes
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Aims The out-of-hospital cardiac arrest (OHCA) outcomes project is a national research registry. One of its aims is to explore sources of variation in OHCA survival outcomes. This study reports the development and validation of risk prediction models for return of spontaneous circulation (ROSC) at hospital handover and survival to hospital discharge. Methods and results The study included OHCA patients who were treated during 2014 and 2015 by emergency medical services (EMS) from seven English National Health Service ambulance services. The 2014 data were used to identify important variables and to develop the risk prediction models, which were validated using the 2015 data. Model prediction was measured by area under the curve (AUC), Hosmer–Lemeshow test, Cox calibration regression, and Brier score. All analyses were conducted using mixed-effects logistic regression models. Important factors included age, gender, witness/bystander cardiopulmonary resuscitation (CPR) combined, aetiology, and initial rhythm. Interaction effects between witness/bystander CPR with gender, aetiology and initial rhythm and between aetiology and initial rhythm were significant in both models. The survival model achieved better discrimination and overall accuracy compared with the ROSC model (AUC = 0.86 vs. 0.67, Brier score = 0.072 vs. 0.194, respectively). Calibration tests showed over- and under-estimation for the ROSC and survival models, respectively. A sensitivity analysis individually assessing Index of Multiple Deprivation scores and location in the final models substantially improved overall accuracy with inconsistent impact on discrimination. Conclusion Our risk prediction models identified and quantified important pre-EMS intervention factors determining survival outcomes in England. The survival model had excellent discrimination.

Details

ISSN :
20581742, 20585225, and 15229645
Volume :
7
Database :
OpenAIRE
Journal :
European Heart Journal - Quality of Care and Clinical Outcomes
Accession number :
edsair.doi.dedup.....f989a968c85fe30e847b2165ecda15fd
Full Text :
https://doi.org/10.1093/ehjqcco/qcaa019