Back to Search
Start Over
Towards functor exponentiation
- Source :
- Journal of Algebra. 505:125-149
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- We consider a possible framework to categorify the exponential map exp(-f) given the categorification of a generator f of $\frak{sl}_2$ by Lauda. In this setup the Taylor expansions of exp(-f) and exp(f) turn into complexes built out of categorified divided powers of f. Hom spaces between tensor powers of categorified f are given by diagrammatics combining nilHecke algebra relations with those for a additional "short strand" generator. The proposed framework is only an approximation to categorification of exponentiation, because the functors categorifying exp(f) and exp(-f) are not invertible.<br />27 pages
- Subjects :
- Pure mathematics
Exponentiation
Categorification
01 natural sciences
law.invention
symbols.namesake
law
Mathematics::Quantum Algebra
Mathematics::Category Theory
Tensor (intrinsic definition)
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
Taylor series
Quantum Algebra (math.QA)
Representation Theory (math.RT)
0101 mathematics
Mathematics::Representation Theory
Mathematics
Algebra and Number Theory
Functor
Generator (category theory)
010102 general mathematics
Exponential map (Lie theory)
Invertible matrix
symbols
010307 mathematical physics
Mathematics - Representation Theory
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 505
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....f961d1d34a9160cb5c3a1b57ef10dab8
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2018.02.030