Back to Search Start Over

Diatom Centromeres Suggest a Novel Mechanism for Nuclear Gene Acquisition

Authors :
Josh L. Espinoza
Ngocquynh A. Nguyen
Jelena Jablanovic
Christopher L. Dupont
Philip D. Weyman
Nathan C. Lian
Jakob Jansson
Jeffrey B. McQuaid
Bogumil J. Karas
Chari Noddings
Miguel A. Anzelmatti
Andrew E. Allen
Rachel E. Diner
Anthony K. Kang
Vincent A. Bielinski
Publication Year :
2016
Publisher :
Cold Spring Harbor Laboratory, 2016.

Abstract

Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. Diatom centromere sequences contain low GC content regions and an abundance of long contiguous AT windows, but lack repeats or other conserved sequence features. Native and foreign sequences of similar GC content can maintain episomes and recruit the diatom centromeric histone protein CENP-A, suggesting non-native sequences can also function as diatom centromeres. Thus, simple sequence requirements enable DNA from foreign sources to incorporate into the nuclear genome repertoire as stable extra-chromosomal episomes, revealing a potential mechanism for bacterial and foreign eukaryotic DNA acquisition.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f95cb1df3d56617e53d02b00f5bdbf23