Back to Search
Start Over
Multifunctional computing-in-memory SRAM cells based on two-surface-channel MoS2 transistors
- Source :
- iScience, Vol 24, Iss 10, Pp 103138-(2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Summary Driven by technologies such as machine learning, artificial intelligence, and internet of things, the energy efficiency and throughput limitations of the von Neumann architecture are becoming more and more serious. As a new type of computer architecture, computing-in-memory is an alternative approach to alleviate the von Neumann bottleneck. Here, we have demonstrated two kinds of computing-in-memory designs based on two-surface-channel MoS2 transistors: symmetrical 4T2R Static Random-Access Memory (SRAM) cell and skewed 3T3R SRAM cell, where the symmetrical SRAM cell can realize in-memory XNOR/XOR computations and the skewed SRAM cell can achieve in-memory NAND/NOR computations. Furthermore, since both the memory and computing units are based on two-surface-channel transistors with high area efficiency, the two proposed computing-in-memory SRAM cells consume fewer transistors, suggesting a potential application in highly area-efficient and multifunctional computing chips.
- Subjects :
- Hardware_MEMORYSTRUCTURES
Multidisciplinary
business.industry
Computer science
Science
Transistor
NAND gate
law.invention
symbols.namesake
Engineering
XNOR gate
law
Embedded system
Devices
symbols
Nanotechnology
Static random-access memory
business
Throughput (business)
Efficient energy use
Von Neumann architecture
Communication channel
Subjects
Details
- ISSN :
- 25890042
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- iScience
- Accession number :
- edsair.doi.dedup.....f9589a47c54598dfd424e51c7a470897
- Full Text :
- https://doi.org/10.1016/j.isci.2021.103138