Back to Search Start Over

Hadron polarization control at integer spin resonances in synchrotrons using a spin navigator

Authors :
S. V. Vinogradov
Andrey Butenko
M. A. Kondratenko
Alexander Kovalenko
E. D. Tsyplakov
A. M. Kondratenko
Yu. N. Filatov
Ya. Derbenev
V. V. Vorobyov
Vasiliy Morozov
Source :
Physical Review Accelerators and Beams, Vol 24, Iss 6, p 061001 (2021)
Publication Year :
2021
Publisher :
American Physical Society, 2021.

Abstract

We consider the capability of flexible spin-transparent polarization control and manipulation in conventional synchrotrons at integer spin resonances by means of spin navigators. The latter are designed as a couple of small solenoids separated by a constant beam bend. We formulate the requirements to the navigator design considering the criteria for stability of the spin motion in the presence of synchrotron energy oscillations. We propose the design of a novel spin-flipping system free of resonant beam depolarization based on such a spin navigator. We discuss the possibilities of testing spin-flipping systems at an integer spin resonance with protons in the Nuclotron ring at JINR in Dubna, Russia, and with deuterons in the RHIC rings at BNL in Upton, New York. The results are relevant to the existing and future facilities where the spin transparency mode can be applied for polarization control.

Details

Language :
English
ISSN :
24699888
Volume :
24
Issue :
6
Database :
OpenAIRE
Journal :
Physical Review Accelerators and Beams
Accession number :
edsair.doi.dedup.....f94a26ea328647e18dbe5f0ae76e1d99