Back to Search Start Over

Genetic and molecular control of folate-homocysteine metabolism in mutant mice

Authors :
Angela Hosack
Joseph H. Nadeau
Benedicte Christensen
David S. Rosenblatt
David Sankoff
James L. McGrath
Allen E. Bale
Clemencia Colmenares
Orval A. Mamer
Rudi Balling
Mitchell Rodier
Brian M. Gilfix
Sheila Ernest
Source :
Mammalian Genome. 13:259-267
Publication Year :
2002
Publisher :
Springer Science and Business Media LLC, 2002.

Abstract

Hyperhomocysteinemia adversely affects fundamental aspects of fetal development, adulthood, and aging, but the role of elevated homocysteine levels in these birth defects and adult diseases remains unclear. Mouse models are valuable for investigating the causes and consequences of hyperhomocysteinemia. We used a phenotype-based approach to identify mouse mutants for studying the relation between single gene mutations, homocysteine levels as a measure of the status of homocysteine metabolism, and gene expression profiles as a way to assess the impact of protein deficiency in mutant mice on steady-state transcription levels of genes in the folate-homocysteine pathways. These mutants were selected based on their propensity to produce phenotypes that are reminiscent of those associated with anomalies in folate-homocysteine metabolism in humans. We report identification of new, single-gene mouse models of homocysteinemia and characterization of their molecular and physiological impact on folate-homocysteine metabolism. Mutations in several genes involved in the hedgehog and WNT signal transduction pathways, as well as a gene involved in lipid metabolism, resulted in elevated homocysteine levels and altered expression profiles of folate-homocysteine metabolism genes. These results begin to unravel the complex relations between elevation of a single amino acid in the blood and the diverse birth defects and adult diseases associated with hyperhomocysteinemia.

Details

ISSN :
14321777 and 09388990
Volume :
13
Database :
OpenAIRE
Journal :
Mammalian Genome
Accession number :
edsair.doi.dedup.....f90d72539bfcdd4a50275f35396ef8a9
Full Text :
https://doi.org/10.1007/s00335-001-3054-2