Back to Search
Start Over
Genetic and molecular control of folate-homocysteine metabolism in mutant mice
- Source :
- Mammalian Genome. 13:259-267
- Publication Year :
- 2002
- Publisher :
- Springer Science and Business Media LLC, 2002.
-
Abstract
- Hyperhomocysteinemia adversely affects fundamental aspects of fetal development, adulthood, and aging, but the role of elevated homocysteine levels in these birth defects and adult diseases remains unclear. Mouse models are valuable for investigating the causes and consequences of hyperhomocysteinemia. We used a phenotype-based approach to identify mouse mutants for studying the relation between single gene mutations, homocysteine levels as a measure of the status of homocysteine metabolism, and gene expression profiles as a way to assess the impact of protein deficiency in mutant mice on steady-state transcription levels of genes in the folate-homocysteine pathways. These mutants were selected based on their propensity to produce phenotypes that are reminiscent of those associated with anomalies in folate-homocysteine metabolism in humans. We report identification of new, single-gene mouse models of homocysteinemia and characterization of their molecular and physiological impact on folate-homocysteine metabolism. Mutations in several genes involved in the hedgehog and WNT signal transduction pathways, as well as a gene involved in lipid metabolism, resulted in elevated homocysteine levels and altered expression profiles of folate-homocysteine metabolism genes. These results begin to unravel the complex relations between elevation of a single amino acid in the blood and the diverse birth defects and adult diseases associated with hyperhomocysteinemia.
- Subjects :
- Hyperhomocysteinemia
Mutant
Biology
Mice
Folic Acid
Gene expression
Genetics
medicine
Animals
Homocysteine
Gene
Oligonucleotide Array Sequence Analysis
Mice, Inbred C3H
Wnt signaling pathway
Lipid metabolism
Blotting, Northern
medicine.disease
Phenotype
Mice, Mutant Strains
Mice, Inbred C57BL
Disease Models, Animal
Gene Expression Regulation
Liver
Female
Signal transduction
Methylmalonic Acid
Signal Transduction
Subjects
Details
- ISSN :
- 14321777 and 09388990
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Mammalian Genome
- Accession number :
- edsair.doi.dedup.....f90d72539bfcdd4a50275f35396ef8a9
- Full Text :
- https://doi.org/10.1007/s00335-001-3054-2