Back to Search Start Over

BAND-9 ALMA OBSERVATIONS OF THE $[{\rm{N}}\,{\rm{II}}]$ 122 μ m LINE AND FIR CONTINUUM IN TWO HIGH- z GALAXIES

Authors :
E. Falgarone
Gordon J. Stacey
Carl Ferkinhoff
Kartik Sheth
Steve Hailey-Dunsheath
Drew Brisbin
Thomas Nikola
Department of Astronomy [Ithaca]
Cornell University [New York]
Spitzer Science Center, California Institute of Technology, Pasadena
California Institute of Technology (CALTECH)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Source :
The Astrophysical Journal, The Astrophysical Journal, American Astronomical Society, 2015, 806 (2), pp.260. ⟨10.1088/0004-637X/806/2/260⟩, The Astrophysical Journal, 2015, 806 (2), pp.260. ⟨10.1088/0004-637X/806/2/260⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z_1 ~ 2.8 and the Cloverleaf QSO at z_1 ~ 2.5) in their rest-frame 122 μm continuum (νsky ~ 650 GHz, λsky ~ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ~0."25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (~1000 M_⊙ yr^(−1)) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems.

Details

Language :
English
ISSN :
0004637X and 15384357
Database :
OpenAIRE
Journal :
The Astrophysical Journal, The Astrophysical Journal, American Astronomical Society, 2015, 806 (2), pp.260. ⟨10.1088/0004-637X/806/2/260⟩, The Astrophysical Journal, 2015, 806 (2), pp.260. ⟨10.1088/0004-637X/806/2/260⟩
Accession number :
edsair.doi.dedup.....f905bf8f927de89bfcf0da932b12710d