Back to Search Start Over

Learning a No-Reference Quality Predictor of Stereoscopic Images by Visual Binocular Properties

Authors :
Jiebin Yan
Jiheng Wang
Yuming Fang
Patrick Le Callet
Xuelin Liu
Guangtao Zhai
Jiangxi University of Science and Technology
Shanghai Jiao Tong University [Shanghai]
Laboratoire des Sciences du Numérique de Nantes (LS2N)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Image Perception Interaction (IPI)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Source :
IEEE Access, IEEE Access, IEEE, 2019, 7, pp.132649-132661. ⟨10.1109/ACCESS.2019.2941112⟩, IEEE Access, Vol 7, Pp 132649-132661 (2019)
Publication Year :
2019
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2019.

Abstract

In this work, we develop a novel no-reference (NR) quality assessment metric for stereoscopic images based on monocular and binocular features, motivated by visual perception properties of the human visual system (HVS) named binocular rivalry and binocular integration. To be more specific, we first calculate the normalized intensity feature maps of right- and left-view images through local contrast normalization, where statistical intensity features are extracted by the histogram of the normalized intensity feature map to represent monocular features. Then, we compute the disparity map of stereoscopic image, with which we extract structure feature map of stereoscopic image based on local binary pattern (LBP). We further extract statistical structure features and statistical depth features from structure feature map and disparity map by histogram to represent binocular features. Finally, we adopt support vector regression (SVR) to train the mapping function from the extracted monocular and binocular features to subjective quality scores. Comparison experiments are conducted on four large-scale stereoscopic image databases and the results demonstrate the promising performance of the proposed method in stereoscopic image quality assessment.

Details

ISSN :
21693536
Volume :
7
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....f8f4020dd06beac9dfc2d0e0bc3cff62
Full Text :
https://doi.org/10.1109/access.2019.2941112