Back to Search
Start Over
Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis
- Source :
- BMC Genomics
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- Background The Bacillus subtilis genome (BGM) vector is a novel cloning system for large DNA fragments, in which the entire 4.2 Mb genome of B. subtilis functions as a vector. The BGM vector system has several attractive properties, such as a large cloning capacity of over 3 Mb, stable propagation of cloned DNA and various modification strategies using RecA-mediated homologous recombination. However, genetic modifications using the BGM vector system have not been fully established, and this system has not been applied to transgenesis. In this study, we developed important additions to the genetic modification methods of the BGM vector system. To explore the potential of the BGM vector, we focused on the fish-like odorant receptor (class I OR) gene family, which consists of 158 genes and forms a single gene cluster. Although a cis-acting locus control region is expected to regulate transcription, this has not yet been determined experimentally. Results Using two contiguous bacterial artificial chromosome clones containing several class I OR genes, we constructed two transgenes in the BGM vector by inserting a reporter gene cassette into one class I OR gene. Because they were oriented in opposite directions, we performed an inversion modification to align their orientation and then fused them to enlarge the genomic structure. DNA sequencing revealed that no mutations occurred during gene manipulations with the BGM vector. We further demonstrated that the modified, reconstructed genomic DNA fragments could be used to generate transgenic mice. Transgenic mice carrying the enlarged transgene recapitulated the expression and axonal projection patterns of the target class I OR gene in the main olfactory system. Conclusion We offer a complete genetic modification method for the BGM vector system, including insertion, deletion, inversion and fusion, to engineer genomic DNA fragments without any trace of modifications. In addition, we demonstrate that this system can be used for mouse transgenesis. Thus, the BGM vector system can be an alternative platform for engineering large DNA fragments in addition to conventional systems such as bacterial and yeast artificial chromosomes. Using this system, we provide the first experimental evidence of a cis-acting element for a class I OR gene.
- Subjects :
- Male
Yeast artificial chromosome
Chromosomes, Artificial, Bacterial
DNA Mutational Analysis
Genetic Vectors
Mice, Transgenic
Biology
Genome
DNA sequencing
Mice
Genes, Reporter
Genetics
Animals
Gene family
Regulatory Elements, Transcriptional
Cloning, Molecular
Gene
Mice, Inbred C3H
Bacterial artificial chromosome
Methodology Article
Gene Transfer Techniques
Mice, Inbred C57BL
genomic DNA
Female
Homologous recombination
Bacillus subtilis
Biotechnology
Subjects
Details
- ISSN :
- 14712164
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- BMC Genomics
- Accession number :
- edsair.doi.dedup.....f8b208664da9328218ae406de8d42848
- Full Text :
- https://doi.org/10.1186/1471-2164-14-300