Back to Search Start Over

Tunable photo-responsive elastic metamaterials

Authors :
Antonio Gliozzi
Marco Miniaci
Benjamin Morin
Andrea Bergamini
Annalisa Chiappone
Emiliano Descrovi
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Acoustique - IEMN
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Politecnico di Torino = Polytechnic of Turin (Polito)
Acoustique - IEMN (ACOUSTIQUE - IEMN)
Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA)
Norwegian University of Science and Technology (NTNU)
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-8 (2020), Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), pp.2576. ⟨10.1038/s41467-020-16272-y⟩, Nature Communications, 2020, 11, pp.2576. ⟨10.1038/s41467-020-16272-y⟩
Publication Year :
2020
Publisher :
Nature Portfolio, 2020.

Abstract

The metamaterial paradigm has allowed an unprecedented space-time control of various physical fields, including elastic and acoustic waves. Despite the wide variety of metamaterial configurations proposed so far, most of the existing solutions display a frequency response that cannot be tuned, once the structures are fabricated. Few exceptions include systems controlled by electric or magnetic fields, temperature, radio waves and mechanical stimuli, which may often be unpractical for real-world implementations. To overcome this limitation, we introduce here a polymeric 3D-printed elastic metamaterial whose transmission spectrum can be deterministically tuned by a light field. We demonstrate the reversible doubling of the width of an existing frequency band gap upon selective laser illumination. This feature is exploited to provide an elastic-switch functionality with a one-minute lag time, over one hundred cycles. In perspective, light-responsive components can bring substantial improvements to active devices for elastic wave control, such as beam-splitters, switches and filters.<br />Here, the authors present a light-responsive elastic metamaterial whose transmission spectrum can be tuned by light stimuli. More specifically, we demonstrate that an appropriate laser illumination is effective in reversibly widening an existing frequency band gap, doubling its initial value.

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....f8914907b3556561b7f5f0138869a30a