Back to Search Start Over

Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

Authors :
O. Couturaud
Rebeca Ribeiro-Palau
F. Lafont
W. Poirier
J. Brun-Picard
Benoit Jouault
Adrien Michon
Félicien Schopfer
Fabien Cheynis
Christophe Consejo
Dimitrios Kazazis
Laboratoire National de Métrologie et d'Essais [Trappes] (LNE )
Laboratoire de photonique et de nanostructures (LPN)
Centre National de la Recherche Scientifique (CNRS)
Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Centre Interdisciplinaire de Nanoscience de Marseille (CINaM)
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Laboratoire Charles Coulomb (L2C)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Nanotechnology, Nature Nanotechnology, Nature Publishing Group, 2015, 10 (11), pp.965-971. ⟨10.1038/nnano.2015.192⟩, Nature Nanotechnology, 2015, 10 (11), pp.965-971. ⟨10.1038/nnano.2015.192⟩
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10−9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10−11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Systeme International d'unites to be based on fixing such fundamental constants of nature. Large-area graphene devices synthesized by chemical vapour deposition are used to develop electrical resistance standards, based on the quantum Hall effect, with state-of-the-art accuracy and under an extended range of experimental conditions of magnetic field, temperature and current.

Details

ISSN :
17483395 and 17483387
Volume :
10
Database :
OpenAIRE
Journal :
Nature Nanotechnology
Accession number :
edsair.doi.dedup.....f8581ae5058316c9929b67db57780987