Back to Search
Start Over
The evolution of bacterial cell size: the internal diffusion-constraint hypothesis
- Source :
- ISME Journal, ISME Journal, Nature Publishing Group, 2017, 11 (7), pp.1559-1568. ⟨10.1038/ismej.2017.35⟩, ISME Journal, 2017, 11 (7), pp.1559-1568. ⟨10.1038/ismej.2017.35⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- BGPI : équipe 2; Size is one of the most important biological traits influencing organismal ecology and evolution. However, we know little about the drivers of body size evolution in unicellulars. A long-term evolution experiment (Lenski's LTEE) in which Escherichia coli adapts to a simple glucose medium has shown that not only the growth rate and the fitness of the bacterium increase over time but also its cell size. This increase in size contradicts prominent 'external diffusion' theory (EDC) predicting that cell size should have evolved toward smaller cells. Among several scenarios, we propose and test an alternative 'internal diffusion-constraint' (IDC) hypothesis for cell size evolution. A change in cell volume affects metabolite concentrations in the cytoplasm. The IDC states that a higher metabolism can be achieved by a reduction in the molecular traffic time inside of the cell, by increasing its volume. To test this hypothesis, we studied a population from the LTEE. We show that bigger cells with greater growth and CO2 production rates and lower mass-to-volume ratio were selected over time in the LTEE. These results are consistent with the IDC hypothesis. This novel hypothesis offers a promising approach for understanding the evolutionary constraints on cell size.
- Subjects :
- 0301 basic medicine
[SDV]Life Sciences [q-bio]
[SDE.MCG]Environmental Sciences/Global Changes
Population
Biology
Microbiology
Bacterial cell structure
Cell size
03 medical and health sciences
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems
Growth rate
évolution
Diffusion (business)
education
Ecology, Evolution, Behavior and Systematics
ComputingMilieux_MISCELLANEOUS
taille cellulaire
education.field_of_study
Bacteria
Ecology
Biological Evolution
cell size
Constraint (information theory)
030104 developmental biology
Evolutionary biology
Cytoplasm
Original Article
Evolutionary ecology
escherichia coli
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
cellule bactérienne
[SDV.EE.IEO]Life Sciences [q-bio]/Ecology, environment/Symbiosis
Subjects
Details
- Language :
- English
- ISSN :
- 17517362 and 17517370
- Database :
- OpenAIRE
- Journal :
- ISME Journal, ISME Journal, Nature Publishing Group, 2017, 11 (7), pp.1559-1568. ⟨10.1038/ismej.2017.35⟩, ISME Journal, 2017, 11 (7), pp.1559-1568. ⟨10.1038/ismej.2017.35⟩
- Accession number :
- edsair.doi.dedup.....f82c97674b224af35e7dc4017844da28
- Full Text :
- https://doi.org/10.1038/ismej.2017.35⟩