Back to Search Start Over

Uranium sorption to organic matter and long-term accumulation in a pristine alpine wetland

Authors :
Pierre Lefebvre
Pierre Le Pape
Arnaud Mangeret
Alkiviadis Gourgiotis
Pierre Sabatier
Pascale Louvat
Olivier Diez
Olivier Mathon
Myrtille O.J.Y. Hunault
Camille Baya
Louise Darricau
Charlotte Cazala
John R. Bargar
Jérôme Gaillardet
Guillaume Morin
Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC)
Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de recherche sur le devenir des pollutions de sites radioactifs (IRSN/PSE-ENV/SEDRE/LELI)
Service des déchets radioactifs et des transferts dans la géosphère (IRSN/PSE-ENV/SEDRE)
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Environnements, Dynamiques et Territoires de Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Institut de Physique du Globe de Paris (IPGP (UMR_7154))
Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
European Synchroton Radiation Facility [Grenoble] (ESRF)
Synchrotron SOLEIL (SSOLEIL)
Centre National de la Recherche Scientifique (CNRS)
Stanford Synchrotron Radiation Lightsource (SSRL SLAC)
SLAC National Accelerator Laboratory (SLAC)
Stanford University-Stanford University
ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018)
Source :
Geochimica et Cosmochimica Acta, Geochimica et Cosmochimica Acta, 2022, 338, pp.322-346. ⟨10.1016/j.gca.2022.10.018⟩, Geochimica et cosmochimica acta 338, 322-346 (2022). doi:10.1016/j.gca.2022.10.018
Publication Year :
2022
Publisher :
Deutsches Elektronen-Synchrotron, DESY, Hamburg, 2022.

Abstract

Geochimica et cosmochimica acta 338, 322 - 346 (2022). doi:10.1016/j.gca.2022.10.018<br />Understanding the controls on uranium (U) mobility in the environment is key to improve the management of sites contaminated by U mining activities. Previous research has shown that natural or engineered wetlands are particularly able to scavenge high amounts of U(VI) and U(IV) under noncrystalline forms. However, questions remain on the respective roles of sorption and reduction processes in the removal of U from running waters in wetlands, as well as on the long-term stability of U storage. Here, we performed a series of geochemical, isotopic (δ238U, (234U/238U)), microscopic (SEM-EDXS, EPMA) and spectroscopic (µ-XRF, µ-XAS, XANES and EXAFS at the U L3 and M4-edges and Fe K-edge) investigations to determine the modes of U accumulation and assess U mobility in a natural exceptionally U-enriched (up to 5000 µg/g) wetland on the shore of Lake Nègre (Mediterranean Alps, France). Uranium (VI) was largely dominant in the two studied soil cores, except a few samples containing as much as ∼50 % U(IV). At the particle scale, U is associated to a variety of organic constituents of the soil matrix with a homogenous oxidation state. Bulk EXAFS spectroscopy at the U L3-edge shows that U is mostly mononuclear, with dominant monodentate binding to organic moieties (C neighbors at ∼3.45 Å). An additional minor fraction of U under polymeric forms is inferred from wavelet (CCWT) analysis of the EXAFS data. These observations are reinforced by 1 M bicarbonate extractions that result in the dissolution of 82–96 % of total U, including putative polymeric species. At the wetland scale, similar or slightly fractionated isotopic ratios (δ238U) between the wetland-feeding creek waters and the wetland soils are observed, supporting the idea that U(VI) sorption on organic matter is the primary U scavenging mechanism. Furthermore, it indicates that partial U(VI) reduction to U(IV) occurs as a second step, after sorption. Analysis of U decay chain disequilibria in the cores as a function of depth suggests that U accumulation in this wetland has lasted for several thousand years. We propose that the wetland acts as an active reactor where U has been massively accumulating for ∼14500 years, especially as U(VI) forms associated to organic matter, and is further partly exported to the lake through soil erosion.<br />Published by Elsevier, New York, NY [u.a.]

Details

Language :
English
ISSN :
00167037
Database :
OpenAIRE
Journal :
Geochimica et Cosmochimica Acta, Geochimica et Cosmochimica Acta, 2022, 338, pp.322-346. ⟨10.1016/j.gca.2022.10.018⟩, Geochimica et cosmochimica acta 338, 322-346 (2022). doi:10.1016/j.gca.2022.10.018
Accession number :
edsair.doi.dedup.....f7dc16f3092ea78bbbe58363b2a5a849
Full Text :
https://doi.org/10.3204/pubdb-2022-07795