Back to Search Start Over

Metabolic control of YAP via the acto-myosin system during liver regeneration

Authors :
Lutz Brusch
Elly M. Tanaka
Hernán Morales-Navarrete
Marino Zerial
Michaela Wilsch-Braeuninger
Uta Dahmen
Yannis Kalaidzidis
Sarah Seifert
Kirstin Meyer
Publication Year :
2019
Publisher :
Cold Spring Harbor Laboratory, 2019.

Abstract

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration, which is controlled by Hippo signalling. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase of F-actin and phospho-Myosin, to compensate an overload of bile acids. Interestingly, these changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to the apical F-actin-rich region and translocates to the nucleus in dependence of the acto-myosin system. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signalling, we explained this behaviour by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f7d162d41959988888e5d4cf09f686fb
Full Text :
https://doi.org/10.1101/617878