Back to Search Start Over

Mechanistic Photophysics of Tellurium-Substituted Uracils: Insights from Multistate Complete-Active-Space Second-Order Perturbation Calculations

Authors :
Ganglong Cui
Bin-Bin Xie
Teng-Shuo Zhang
Yun-Hua Zhu
Xiu-Fang Tang
Xue-Ping Chang
Source :
The Journal of Physical Chemistry A. 125:8816-8826
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

The photophysical mechanisms of tellurium-substituted uracils were studied at the multistate complete-active-space second-order perturbation level with a particular focus on how the position and number of tellurium substitutions affect their nonadiabatic relaxation processes. Electronic structure analysis reveals that the lowest several excited states are closely concerned with the n and π orbitals at the Te7-C2 [Te8-C4] moiety of 2-tellurouracil (2TeU) [4TeU and 24TeU]. Both planar and twisted minima were optimized for 2TeU, whereas only planar ones were obtained for 4TeU and 24TeU, except for a twisted T1 minimum of 4TeU. Based on intersection structures and linearly interpolated internal coordinate paths, we proposed several feasible excited-state deactivation paths. It is found that the relaxation channels for 2TeU are more complicated than those of 4TeU and 24TeU. The electronic population transfer to the T1 state for 2TeU is easier than that for 4TeU and 24TeU in consideration of the barrier heights from the S2 Franck-Condon point to the S2/S1 or S2/T2 intersections. In addition, the recovery of the ground state from the T1 state for 2TeU will be more efficient than that for the other two systems as well.

Details

ISSN :
15205215 and 10895639
Volume :
125
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry A
Accession number :
edsair.doi.dedup.....f7aa00e46639901cbce0ee45a009ad07