Back to Search Start Over

Spanning Forests and the q-State Potts Model in the Limit q→0

Authors :
Alan D. Sokal
Jesper Lykke Jacobsen
Jesús Salas
Le Vaou, Claudine
Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Depto. de Fisica
Universidad Carlos III de Madrid [Madrid] (UC3M)
Department of Physics [New York]
New York University [New York] (NYU)
NYU System (NYU)-NYU System (NYU)
Source :
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid, Universidad Carlos III de Madrid (UC3M), e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2005, 119, pp.1153-1281
Publication Year :
2005
Publisher :
Springer, 2005.

Abstract

We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.<br />Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal version

Subjects

Subjects :
High Energy Physics - Theory
Matemáticas
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
q→0 limit
Berker-Kadanoff phase
Scaling dimension
01 natural sciences
Triangular lattice
010305 fluids & plasmas
Transition point
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Lattice (order)
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Potts model
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
Mathematical Physics
Phase diagram
Mathematical physics
Phase transition
Physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
High Energy Physics - Lattice (hep-lat)
Mathematical Physics (math-ph)
[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]
Beraha-Kahane-Weiss theorem
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
Massless particle
Combinatorics (math.CO)
Critical exponent
FOS: Physical sciences
Conformal map
[PHYS.HLAT] Physics [physics]/High Energy Physics - Lattice [hep-lat]
Astrophysics::Cosmology and Extragalactic Astrophysics
Transfer matrix
Ingeniería Industrial
[PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
High Energy Physics - Lattice
Fortuin-Kasteleyn representation
Spanning forest
0103 physical sciences
FOS: Mathematics
Mathematics - Combinatorics
[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
010306 general physics
Condensed Matter - Statistical Mechanics
Square lattice
Statistical Mechanics (cond-mat.stat-mech)
[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]
Statistical and Nonlinear Physics
Conformal field theory
High Energy Physics - Theory (hep-th)
[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]

Details

Language :
English
ISSN :
00224715 and 15729613
Database :
OpenAIRE
Journal :
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid, Universidad Carlos III de Madrid (UC3M), e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2005, 119, pp.1153-1281
Accession number :
edsair.doi.dedup.....f7a8f8a95f057848f98d2667432284c4