Back to Search Start Over

On the transformation of 'zincone'-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

Authors :
Stefan Pachmajer
Alberto Perrotta
Antonella Milella
Julian Pilz
Anna Maria Coclite
Source :
Beilstein Journal of Nanotechnology, Beilstein Journal of Nanotechnology, Vol 10, Iss 1, Pp 746-759 (2019)
Publication Year :
2018

Abstract

The synthesis of nanoporous ZnO thin films is achieved through annealing of zinc-alkoxide (“zincone”-like) layers obtained by plasma-enhanced atomic layer deposition (PE-ALD). The zincone-like layers are deposited through sub-saturated PE-ALD adopting diethylzinc and O2 plasma with doses below self-limiting values. Nanoporous ZnO thin films were subsequently obtained by calcination of the zincone-like layers between 100–600 °C. Spectroscopic ellipsometry (SE) and X-ray diffraction (XRD) were adopted in situ during calcination to investigate the removal of carbon impurities, development of controlled porosity, and formation and growth of ZnO crystallites. The layers developed controlled nanoporosity in the range of 1–5%, with pore sizes between 0.27 and 2.00 nm as measured with ellipsometric porosimetry (EP), as a function of the plasma dose and post-annealing temperature. Moreover, the crystallinity and crystallite orientation could be tuned, ranging from a powder-like to a (100) preferential growth in the out-of-plane direction, as measured by synchrotron-radiation grazing incidence XRD. Calcination temperature ranges were identified in which pore formation and subsequent crystal growth occurred, giving insights in the manufacturing of nanoporous ZnO from Zn-based hybrid materials.

Details

ISSN :
21904286
Volume :
10
Database :
OpenAIRE
Journal :
Beilstein journal of nanotechnology
Accession number :
edsair.doi.dedup.....f76c78d3e3d79036f653b9f33d0891ce