Back to Search Start Over

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Authors :
Z. Josh Huang
Valentine Svensson
Christine Rimorin
Sebastian Preissl
Qiwen Hu
Yang Eric Li
Carlo Colantuoni
Olivier Poirion
Darren Bertagnolli
Vasilis Ntranos
Antonio Pinto-Duarte
Megan Crow
Delissa McMillen
Evan Z. Macosko
Nick Dee
Zizhen Yao
Hongkui Zeng
Hector Roux de Bézieux
Bing Ren
Sheng-Yong Niu
Brian R. Herb
Jacinta Lucero
Ricky S. Adkins
Rongxin Fang
Eeshit Dhaval Vaishnav
Peter V. Kharchenko
Charles R. Vanderburg
Xiaomeng Hou
Joshua D. Welch
Angeline Rivkin
Sandrine Dudoit
Michael Tieu
Michael Hawrylycz
Jayaram Kancherla
Anup Mahurkar
Victor Felix
Lior Pachter
Jonathan Crabtree
Ronna Hertzano
Héctor Corrada Bravo
Aviv Regev
Wayne I. Doyle
Fangming Xie
Owen White
A. Sina Booeshaghi
Chongyuan Luo
Jeff Goldy
Andrew I. Aldrige
Joseph R. Ecker
Naeem Nadaf
Elizabeth Purdom
Hanqing Liu
Eran A. Mukamel
Kanan Lathia
Kelly Street
Michelle G. Giglio
Xinxin Wang
Julia K. Osteen
Olivia Fong
Bosiljka Tasic
Matthew Kroll
Tommaso Biancalani
Thanh Pham
John Ngai
Amy Torkelson
Thuc Nghi Nguyen
Ann Bartlett
Kimberly A. Smith
Kirsten Crichton
Herman Tung
Heather Huot Creasy
Josef Sulc
M. Margarita Behrens
Cindy T. J. van Velthoven
Koen Van den Berge
Jesse Gillis
Joseph R. Nery
Tamara Casper
Elizabeth L. Dougherty
Davide Risso
Seth A. Ament
Stephan Fischer
Joshua Orvis
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f7633422e96f93e32198625f13e63944
Full Text :
https://doi.org/10.1101/2020.02.29.970558